A
guide for electronics engineering students who are just starting out
their academic studies and also those who want to set themselves apart
in a competitive career environment
SUDESHNA DAS
SUDESHNA DAS
Last
month, the idea about this article came to my mind just after watching
the movie 3 Idiots. By now, I guess you haven’t been able to escape from
being influenced either. The movie—a fairly serious take— essentially
depicts how eager we are to embrace mindlessness and how keen we are to
promote a culture where education is purely examination-centric without
real-life application.
It’s time that you get out of this ‘aka idito’ vagueness of just following the herd and passing the exam. Here is your ‘why’ and ‘how to’ guide.
Why focus on practical knowledge?
“There
is a gap between engineering course content and the requirements of the
engineering services industry,” says Krishna Kant, senior programme
manager, academic alliance programme–South Asia & Russia, EMC, from
his vast talent nurturing experience.
C.P. Ravikumar, director-university relation, Texas Instruments, adds, “We perceive this gap during the process of interviews for regular as well as internship positions.” While our education system imparts knowledge on various technical/non-technical areas, it often falls short of meeting the expectations of the real world. “The biggest gap is the practical application and knowledge of industry practices related to the requirements of a particular role,” says Lokesh Mehra, regional manager-corporate responsibility, Cisco South Asia.
One reason for this gap is a fundamental lacuna in the engineering education framework. This is the only profession where an individual goes from an academic programme directly into a job, with no prior on-the-job training. All the other fields of study require individuals to have a six-month to one-year long apprenticeship or internship before they start doing the real job.
“Getting fresh graduates ramped up quickly to productivity is a key concern across the industry ecosystem as new graduates sometimes take six months to a year to become productive. Ideally, we should overhaul engineering education and make its duration five years by including a mandatory six-months to one-year long apprenticeship,” opines Jaswinder Ahuja, corporate vice president and managing director, Cadence Design Systems.
Vinay Shetty, country head-component business, ASUS (India), explains, “When fresh graduates enter the working environment, they have lots of theoretical knowledge which is redundant, rather than the necessary practical knowledge.”
Neelam Kumar, executive director, Aplab, points out, “Most of our institutions and universities lag behind the rest of the world in research output.”
C.P. Ravikumar, director-university relation, Texas Instruments, adds, “We perceive this gap during the process of interviews for regular as well as internship positions.” While our education system imparts knowledge on various technical/non-technical areas, it often falls short of meeting the expectations of the real world. “The biggest gap is the practical application and knowledge of industry practices related to the requirements of a particular role,” says Lokesh Mehra, regional manager-corporate responsibility, Cisco South Asia.
One reason for this gap is a fundamental lacuna in the engineering education framework. This is the only profession where an individual goes from an academic programme directly into a job, with no prior on-the-job training. All the other fields of study require individuals to have a six-month to one-year long apprenticeship or internship before they start doing the real job.
“Getting fresh graduates ramped up quickly to productivity is a key concern across the industry ecosystem as new graduates sometimes take six months to a year to become productive. Ideally, we should overhaul engineering education and make its duration five years by including a mandatory six-months to one-year long apprenticeship,” opines Jaswinder Ahuja, corporate vice president and managing director, Cadence Design Systems.
Vinay Shetty, country head-component business, ASUS (India), explains, “When fresh graduates enter the working environment, they have lots of theoretical knowledge which is redundant, rather than the necessary practical knowledge.”
Neelam Kumar, executive director, Aplab, points out, “Most of our institutions and universities lag behind the rest of the world in research output.”
What should you do?
Here I take you through five boosters for your career.
Tip #1: Pay attention to basics
It
may not sound important, but most of the interviewers will start with
active and passive components, building blocks of electronics systems
and nonetheless faultfinding techniques. “A strong foundation of the
basics of electronics is must,” says Raminder Singh Soin, managing
director, Quad.
Strong fundamentals of electronics will help you to understand complex topics that you may get exposed to after joining the industry.
An electronics engineer is expected to have an excellent knowledge of electronic devices and RF, analogue, digital and especially CMOS design. This includes electrical fundamentals like signal integrity and power integrity. “Specifically, expertise in VLSI, VHDL, FPGA and ASIC design, signal processing, control systems, industrial manufacturing systems, power transmission, simulation and verification techniques is required,” says Neeraj Varma, country manager-sales, Xilinx, India, Australia and New Zealand.
In terms of languages, one must be familiar with HDL (Verilog or VHDL), C and C++. Other skills that an electronics engineer must seek to possess are domain knowledge of microprocessors, control systems, embedded systems, and circuit and device testing.
Strong fundamentals of electronics will help you to understand complex topics that you may get exposed to after joining the industry.
An electronics engineer is expected to have an excellent knowledge of electronic devices and RF, analogue, digital and especially CMOS design. This includes electrical fundamentals like signal integrity and power integrity. “Specifically, expertise in VLSI, VHDL, FPGA and ASIC design, signal processing, control systems, industrial manufacturing systems, power transmission, simulation and verification techniques is required,” says Neeraj Varma, country manager-sales, Xilinx, India, Australia and New Zealand.
In terms of languages, one must be familiar with HDL (Verilog or VHDL), C and C++. Other skills that an electronics engineer must seek to possess are domain knowledge of microprocessors, control systems, embedded systems, and circuit and device testing.
Tip #2: Get trained to have an extra edge
If
you’ve just entered the college, your course curriculum may not provide
all the learning you need. Make an effort to gain some extra skill, be
it technical or interpersonal.
“Each engineering institute or college should make use of the vast resource of experts and organi-sations readily available in the country to do some technical training on specialised topics. This will enable the students for the working world,” suggests Shetty.
Electronics has many branches today, such as VLSI, DSP, communications, power electronics and embedded systems. “The industry may assume that the student has been exposed to at least one course in these branches. While the industry may be willing to provide job-specific training, the student is expected to have the technical know-how required to absorb the training. For example, for training in VLSI, the student is expected to know about MOS transistor operation, CMOS circuits, logic gates and flip-flops, operational amplifiers, feedback amplifiers, poles and zeroes,” says Ravikumar.
Ravikumar also feels that system-level design using off-the-shelf ICs is a major gap-area today. In digital and analogue design lab classes, students use simple ICs such as gates and op-amps. They may later do a lab on microprocessor/microcontroller/DSP/C programming. Here learning could be improved in two ways:
1. The lab exercises in these classes are often ‘canned’— there are ready-made kits with standard set of experiments that the students carry out in a routine fashion. Also, due to large team sizes, all students may not get the required exposure to equipment. However, with falling costs of electronics, students may be able to set up their own little lab in their hostel room. Availability of public-domain software and low-cost computing platforms has helped the students significantly.
2. There is no class where the learning from the courses in digital, analogue, processor and programming are brought together. This may happen in a project for some students.
According to Ahuja, “India produces a large number of electronics and computer science graduate engineers every year. So while there is no dearth of manpower, the challenge is finding ‘design-aware’ engineers who are trained specifically in VLSI design and can ramp up quickly.”
“With the surge in high-tech design projects coming to India in areas such as telecom, automotive, aerospace and industrial automation, the industry workforce has been exposed to very high levels of product design, development, testing and validation phases over the last decade or so. With more and more such projects becoming a norm in India, the industry requires talent with quality and specialised skill sets. The demand for electronics design engineers having product, domain and software tools expertise is high,” says Varma.
Kant suggests, “Actively look out for science, engineering and maths competitions that organisations/educational institutes conduct. Such initiatives are excellent opportunities to demonstrate creativity, secure mentoring opportunities from industry experts and participate in exciting, competitive and recognised events. Try engaging consistently with the institute/university faculty to understand sponsorship and scholarship opportunities offered by companies/ universities.”
He also feels that besides technical skills, students must possess excellent problem-solving and decision-making abilities, English communication skills, and organisation and management skills for an all-round perspective.
Mehra, in addition to these skills, emphasises on ethical behaviour as majority of the MNCs empower their staff and would like them to showcase good ethics while dealing internally or externally with vendors or customers.
“Each engineering institute or college should make use of the vast resource of experts and organi-sations readily available in the country to do some technical training on specialised topics. This will enable the students for the working world,” suggests Shetty.
Electronics has many branches today, such as VLSI, DSP, communications, power electronics and embedded systems. “The industry may assume that the student has been exposed to at least one course in these branches. While the industry may be willing to provide job-specific training, the student is expected to have the technical know-how required to absorb the training. For example, for training in VLSI, the student is expected to know about MOS transistor operation, CMOS circuits, logic gates and flip-flops, operational amplifiers, feedback amplifiers, poles and zeroes,” says Ravikumar.
Ravikumar also feels that system-level design using off-the-shelf ICs is a major gap-area today. In digital and analogue design lab classes, students use simple ICs such as gates and op-amps. They may later do a lab on microprocessor/microcontroller/DSP/C programming. Here learning could be improved in two ways:
1. The lab exercises in these classes are often ‘canned’— there are ready-made kits with standard set of experiments that the students carry out in a routine fashion. Also, due to large team sizes, all students may not get the required exposure to equipment. However, with falling costs of electronics, students may be able to set up their own little lab in their hostel room. Availability of public-domain software and low-cost computing platforms has helped the students significantly.
2. There is no class where the learning from the courses in digital, analogue, processor and programming are brought together. This may happen in a project for some students.
According to Ahuja, “India produces a large number of electronics and computer science graduate engineers every year. So while there is no dearth of manpower, the challenge is finding ‘design-aware’ engineers who are trained specifically in VLSI design and can ramp up quickly.”
“With the surge in high-tech design projects coming to India in areas such as telecom, automotive, aerospace and industrial automation, the industry workforce has been exposed to very high levels of product design, development, testing and validation phases over the last decade or so. With more and more such projects becoming a norm in India, the industry requires talent with quality and specialised skill sets. The demand for electronics design engineers having product, domain and software tools expertise is high,” says Varma.
Kant suggests, “Actively look out for science, engineering and maths competitions that organisations/educational institutes conduct. Such initiatives are excellent opportunities to demonstrate creativity, secure mentoring opportunities from industry experts and participate in exciting, competitive and recognised events. Try engaging consistently with the institute/university faculty to understand sponsorship and scholarship opportunities offered by companies/ universities.”
He also feels that besides technical skills, students must possess excellent problem-solving and decision-making abilities, English communication skills, and organisation and management skills for an all-round perspective.
Mehra, in addition to these skills, emphasises on ethical behaviour as majority of the MNCs empower their staff and would like them to showcase good ethics while dealing internally or externally with vendors or customers.
Tip #3: exploit your internship
Even
if it is not compulsory in your course curriculum to do an internship,
do one anyway. In fact, try enrolling for more than one if possible.
Taking up a project or internship to build something is essential, as
there is plenty of learning for the student to imbibe, whether the
project succeeds or not.
“Colleges have included industry visits, seminars and projects for this purpose. Unfortunately, many students treat these courses lightly. My advice would be to take the internship seriously, for the soft skills they impart will be invaluable,” advises Ravikumar.
According to Ahuja, industry academia-government partnership will provide students with valuable practical experience while in college, by applying their theoretical knowledge to actual customer problems. The ecosystem needs to work together to constantly update the curriculum of educational institutes for it to be in line with the latest industry developments and encouraging internship programmes. This will impart hands-on technical, business and soft skills to students in a professional environment and also give the company access to a potential workforce.
Keep in mind that “interning is about more than just showing up at an office and earning a recommendation letter,” says Sanjay Mittal, managing director, Yogasa Systems. Grab every opportunity to chat with everyone from senior members to fresh recruits. You’ll learn a lot about the industry, job and their expectations. It may help to join the same company after completing your course. In fact, interning is just like auditioning—you try the company to check whether it suits you.
“Colleges have included industry visits, seminars and projects for this purpose. Unfortunately, many students treat these courses lightly. My advice would be to take the internship seriously, for the soft skills they impart will be invaluable,” advises Ravikumar.
According to Ahuja, industry academia-government partnership will provide students with valuable practical experience while in college, by applying their theoretical knowledge to actual customer problems. The ecosystem needs to work together to constantly update the curriculum of educational institutes for it to be in line with the latest industry developments and encouraging internship programmes. This will impart hands-on technical, business and soft skills to students in a professional environment and also give the company access to a potential workforce.
Keep in mind that “interning is about more than just showing up at an office and earning a recommendation letter,” says Sanjay Mittal, managing director, Yogasa Systems. Grab every opportunity to chat with everyone from senior members to fresh recruits. You’ll learn a lot about the industry, job and their expectations. It may help to join the same company after completing your course. In fact, interning is just like auditioning—you try the company to check whether it suits you.
Tip #4: Know the industry trend
“A
fresh electronics engineer needs to be conversant with global trends
and pioneering research done worldwide. To acquaint himself with the
challenges that will face him in the future, the engineering student
should re-examine and realign his goals with the current scenario that
prevails. He should also keep himself abreast of recent trends in
business and technology, if he is serious about making a
transformational change,” says Kumar.
Shetty feels that there is no alternative to on-the-job research. Students need to have some insights by either working or doing some research on how the industry segment of their choice actually operates.
“The electronics industry is very large today. There are multiple sub-disciplines. Even some software disciplines require a sound knowledge of electronics along with a strong grip on programming, e.g., electronic design automation. I would advise the engineering aspirants to become strong in fundamentals and take elective courses that give them the exposure to recent advances,” says Ravi Kumar.
According to him, “Becoming a member of a professional society and taking active part in seminars and workshops will also help in understanding where the electronics industry is headed.”
Kant adds, “Subscribe to important and insightful trade media journals and newsletters to keep track of trends and latest developments in electronics engineering.”
Keeping abreast of the industry and economy may even help you to find an extremely satisfying career outside the mainstream.
Shetty feels that there is no alternative to on-the-job research. Students need to have some insights by either working or doing some research on how the industry segment of their choice actually operates.
“The electronics industry is very large today. There are multiple sub-disciplines. Even some software disciplines require a sound knowledge of electronics along with a strong grip on programming, e.g., electronic design automation. I would advise the engineering aspirants to become strong in fundamentals and take elective courses that give them the exposure to recent advances,” says Ravi Kumar.
According to him, “Becoming a member of a professional society and taking active part in seminars and workshops will also help in understanding where the electronics industry is headed.”
Kant adds, “Subscribe to important and insightful trade media journals and newsletters to keep track of trends and latest developments in electronics engineering.”
Keeping abreast of the industry and economy may even help you to find an extremely satisfying career outside the mainstream.
Tip #5: understand your aptitude
Last,
but the most important of all, don’t follow the herd. “Since majority
of the technical skills are quite well-founded within students, they
need to match real-life practical applications, especially from a
problem-solving perspective. Students should have the ability to assess
the situation, identify key issues that need to be addressed, break down
complex problems into simpler manageable problems and resolve the
problem to develop workable solutions. Companies are looking for people
who can fix problems with minimal direction. They don’t want to have to
tell people to react when fires are burning,” says Mehra. So once you’ve
understood your aptitude and carefully evaluated the job market, you
can make your leap.
Further, Mehra advises that in their third or fourth year of engineering, the students should begin to think of what industry they wish to join and start digging into the relevant literature. If you are fortunate enough, you may get to do an internship in the industry of your choice.
In fact, there has been a spurt in various application fields of electronics engineering—defence, infrastructure (railways, aerospace, metro and telecom), biomedical, consumer appliances, industrial power, instrumentation engineering, automotive, etc. So once you figure out what is of your interest, work towards developing skills required for that vertical.
Finally, your future is in your hands. So don’t hesitate to spend enough time exploring all the possible ways before final settlement.
Further, Mehra advises that in their third or fourth year of engineering, the students should begin to think of what industry they wish to join and start digging into the relevant literature. If you are fortunate enough, you may get to do an internship in the industry of your choice.
In fact, there has been a spurt in various application fields of electronics engineering—defence, infrastructure (railways, aerospace, metro and telecom), biomedical, consumer appliances, industrial power, instrumentation engineering, automotive, etc. So once you figure out what is of your interest, work towards developing skills required for that vertical.
Finally, your future is in your hands. So don’t hesitate to spend enough time exploring all the possible ways before final settlement.